Name ______ 5.3 Practice

Determine whether the given function is exponential or not. For those that are exponential functions, write the function.

3. (#33-40)

Problems 33-40, the graph of an exponential function is given. Match each graph to one of the following functions.

Use transformations to graph each function. Determine the domain, range, and horizontal asymptote of each function.

4. $f(x) = -3^{x} + 1$ 5. $f(x) = 1 - 2^{-\frac{x}{3}}$ 6. $f(x) = e^{x} - 1$ 7. $f(x) = 7 - 3e^{2x}$

Solve each equation.

8.
$$4^{x^2} = 2^x$$

9. $8^{x^2 - 2x} = \frac{1}{2}$
10. $\left(\frac{1}{5}\right)^{2-x} = 25$
11. $4^x - 2^x = 0$

12. $(e^4)^x e^{x^2} = e^{12}$

$$2^{x} = 3$$
, what does 4^{-x} equal?

 $5^{-x} = 3$, what does 5^{3x} equal?

Determine the exponential function whose graph is given. 15. 16.

18.

19. Between 5:00 pm and 6:00 pm, cars arrive at Jiffy Lube at the rate of 9 cars per hour (0.15 car per minute). The following formula from the field of probability can be used to determine the probability that a car will arrive within *t* minutes of 5:00 pm:

$$F(t) = 1 - e^{-0.15}$$

- a) Determine the probability that a car will arrive within 15 minutes of 5:00 pm.
- b) Determine the probability that a car will arrive within 30 minutes of 5:00 pm.
- c) What value does *F* approach as *t* becomes unbounded in the positive direction?

20. People enter a line for the *Demon Roller Coaster* at the rate of 4 per minute. The following formula from probability can be used to determine the probability that *x* people will arrive within the next minute.

$$P(x) = \frac{4^x e^{-4}}{x!}$$

where

$$x! = x \bullet (x-1) \bullet (x-2) \bullet \dots \bullet 3 \bullet 2 \bullet 1$$

example : 5! = 5 • 4 • 3 • 2 • 1

- a) Determine the probability that 5 people will arrive within the next minute.
- b) Determine the probability that 8 people will arrive within the next minute.

21. A model for the number of people *N* in a college community who have heard a certain rumor is $N = P(1 - e^{-0.15d})$

where *P* is the total population of the community and *d* is the number of days that have elapsed since the rumor began.

In a community of 1000 students, how many students will have heard the rumor after 3 days?