$_{b}$ fair or False: $\pi = 180$.

h frie or False: $180^{\circ} = \pi$ radians. Integral of the unit circle, if s is the length of the sublended by a central angle θ , measured: frie or runsed by a central angle θ , measured in radians, then $s = \theta$.

9. True or False: The area A of the sector of a circle of radius rformed by a central angle of θ degrees is $A = \frac{1}{2}r^2\theta$.

10. True or False: For circular motion on a circle of radius r, linear speed equals angular speed divided by r.

Exercises

_{Ju Problems} 11–22, draw each angle.

\11. 30°

14. −120°

16. 540°

12. 60° 13. 135° 18. $\frac{4\pi}{3}$ 19. $-\frac{\pi}{6}$

20. $-\frac{2\pi}{3}$ **21.** $\frac{16\pi}{3}$

in Problems 23–28, convert each angle to a decimal in degrees. Round your answer to two decimal places.

13, 40°10'25"

24. 61°42′21″

25. 1°2′3″

26. 73°40′40″

27. 9°9′9″

28. 98°22′45"

In Problems 29-34, convert each angle to D°M'S" form. Round your answer to the nearest second.

30. 61.24°

31. 18.255°

32. 29.411°

33. 19.99°

34. 44.01°

In Problems 35–46, convert each angle in degrees to radians. Express your answer as a multiple of π .

\ ₹ 30°

36. 120°

37. 240°

38. 330° **39.** −60°

40. −30°

42. 270°

43. -135°

44. -225°

45. -90°

46. -180°

in Problems 47-58, convert each angle in radians to degrees.

48. $\frac{5\pi}{6}$ **49.** $-\frac{5\pi}{4}$ **50.** $-\frac{2\pi}{3}$ **51.** $\frac{\pi}{2}$ **52.** 4π **54.** $\frac{5\pi}{12}$ **55.** $-\frac{\pi}{2}$ **56.** $-\pi$ **57.** $-\frac{\pi}{6}$ **58.** $-\frac{3\pi}{4}$

In Problems 59-64, convert each angle in degrees to radians. Express your answer in decimal form, rounded to two decimal places.

59, 17°

61. -40°

62. -51° **63.** 125°

In Problems 65-70, convert each angle in radians to degrees. Express your answer in decimal form, rounded to two decimal places.

65, 3.14

66. 0.75

69, 6.32

70. $\sqrt{2}$

In Problems 71-78, s denotes the length of the arc of a circle of radius r subtended by the central angle θ. Find the missing quanthy. Round answers to three decimal places.

71. r = 10 meters, $\theta = \frac{1}{2}$ radian, s = ?

72. r = 6 feet, $\theta = 2$ radians, s = ?

 $\Re \theta = \frac{1}{3} \text{ radian}, \quad s = 2 \text{ feet}, \quad r = ?$

74. $\theta = \frac{1}{4}$ radian, s = 6 centimeters, r = ?

 $\Re_{r=5}$ miles, s=3 miles, $\theta=?$

76. r = 6 meters, s = 8 meters, $\theta = ?$

 $\eta_{r=2}$ inches, $\theta = 30^{\circ}$, s = ?

78. r = 3 meters, $\theta = 120^{\circ}$, s = ?

In Problems 79–86, A denotes the area of the sector of a circle of radius r formed by the central angle θ. Find the missing quanti-19. Round answers to three decimal places.

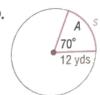
 $\theta = 10 \text{ meters}, \quad \theta = \frac{1}{2} \text{ radian}, \quad A = ?$

80. r = 6 feet, $\theta = 2$ radians, A = ?

 $\delta l_{t} \theta = \frac{1}{3} \text{radian}, \quad A = 2 \text{ square feet}, \quad r = ?$

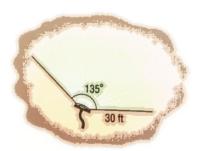
82. $\theta = \frac{1}{A}$ radian, A = 6 square centimeters, r = ?

83.
$$r = 5$$
 miles, $A = 3$ square miles, $\theta = ?$


84.
$$r = 6$$
 meters, $A = 8$ square meters, $\theta = 120^{\circ}$, $A = ?$

83.
$$r = 5$$
 miles, $A = 3$ square times,

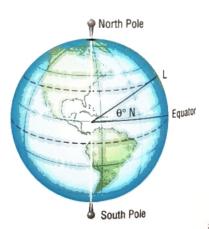
In Problems 87–90, find the length s and area A. Round answers to three decimal places.


90.

91. Minute Hand of a Clock The minute hand of a clock is 6 inches long. How far does the tip of the minute hand move in 15 minutes? How far does it move in 25 minutes?

- 92. Movement of a Pendulum A pendulum swings through an angle of 20° each second. If the pendulum is 40 inches long, how far does its tip move each second?
- 93. Area of a Sector Find the area of the sector of a circle of radius 4 meters formed by an angle of 45°. Round the answer to two decimal places.
- 94. Area of a Sector Find the area of the sector of a circle of radius 3 centimeters formed by an angle of 60°. Round the answer to two decimal places.
- 95. Watering a Lawn A water sprinkler sprays water over a distance of 30 feet while rotating through an angle of 135°. What area of lawn receives water?

- 96. Designing a Water Sprinkler An engineer is asked to design a water sprinkler that will cover a field of 100 square yards that is in the shape of a sector of a circle of radius 50 yards. Through what angle should the sprinkler
- 97. Motion on a Circle An object is traveling around a circle with a radius of 5 centimeters. If in 20 seconds a central angle of $\frac{1}{3}$ radian is swept out, what is the angular speed of the object? What is its linear speed?
- 98. Motion on a Circle An object is traveling around a circle with a radius of 2 meters. If in 20 seconds the object


travels 5 meters, what is its angular speed? What's ear speed?

99. Bicycle Wheels The diameter of each wheel who cle is 26 inches. If you are traveling at a speci miles per hour on this bicycle, through how mans lutions per minute are the wheels turning?

100. Car Wheels The radius of each wheel of a car inches. If the wheels are turning at the rate of 3 to tions per second, how fast is the car moving? Ex your answer in inches per second and in miles per

In Problems 101–104, the latitude of a location Listus formed by a ray drawn from the center of Earth to the Eq and a ray drawn from the center of Earth to L. See the

101. Distance between Cities Memphis Tennesser, in the distance north of New Orleans, Louisiana. Find the distance tween Manual M tween Memphis (35°9' north latitude) and leans (20°57' leans (29°57' north latitude). Assume that the

- - 117. What is 1 radian?
 - 117. What is 2.

 118. Which angle has the larger measure: 1 degree or 1 radii. an? Or are they equal?
 - 119. Explain the difference between linear speed and and gular speed.
 - 120. For a circle of radius r, a central angle of θ degrees subtends an arc whose length s is $s = \frac{\pi}{180} r\theta$. Discuss whether this is a true or false statement. Give reasons to defend your position.
 - 121. Discuss why ships and airplanes use nautical miles to measure distance. Explain the difference between a nautical mile and a statute mile.
 - 122. Investigate the way that speed bicycles work. In particular, explain the differences and similarities between 5-speed and 9-speed derailleurs. Be sure to include a discussion of linear speed and angular speed.