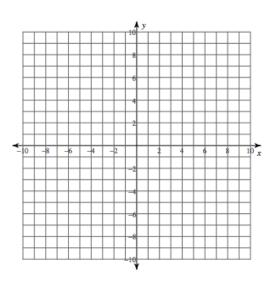
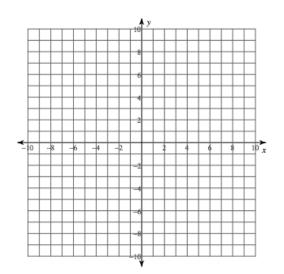
1. For the given functions *f* and *g*, find the domain of $(f \circ g)(x)$.

 $f(x) = \sqrt{x-1}$ g(x) = 2x-3


2. For the given functions *f* and *g*, find the given composite function.

 $f(x) = \frac{3}{x-4}$ $g(x) = \frac{3}{x}$ $(g \circ f)(x)$

3. Decide whether or not the functions are inverses of each other. f(x) = 3x - 4 $g(x) = \frac{x+3}{4}$


4. Find the inverse function of *f*. State the domain and range of *f*. $f(x) = \frac{3x-2}{x+5}$ 5. Solve. $3^3 \cdot 9^{-2p+1} = 1$

6. Sketch a graph of the function. $f(x) = 3^{x+1}$

7. Solve. $\log_3(10 - 4b) = 2$

8. Identify the domain and range. Sketch the graph. $f(x) = \ln(x+5) - 2$

9. Use the properties of logarithms to find the exact value of the expression without using a calculator. $\log_4 24 - \log_4 6$

10. Write as the sum and/or difference of logarithms. Express powers as factors.

 $\log_3\left(\frac{x^4}{y^8}\right)$

11. Express as a single logarithm. $2\log_3 x + \log_3 y$

12. Use the change-of-base formula and a calculator to evaluate the logarithm. Round the answer to three decimal places. $\log_2 12$

Solve. 13. $e^{2x} - 3e^x - 4 = 0$

14. $2^{x+2} = 6^{2x-5}$